Identify Vulnerability in a Mobile App for

the Hackazon Application

Hayden Eubanks
School of Business, Liberty University
CSIS 486-D01
Prof. Backherms

November 26, 2023

Initial Dynamic Security Scan of the Hackazon Application

Introduction:

When examining the infrastructure of many modern databases, it can be seen that most
web pages utilize a database for storing and retrieving data elements (Bedekovi¢ et al., 2022).
Often, the data within these databases is retrieved by issuing SQL commands to the database to
have the database return the desired values (Simpson & Anthill, 2017). This could include data
such as the product listings for an e-commerce application, but also more sensitive info such as
login credentials, payment information, or sensitive personal details. With this in mind, it can be
understood that the data stored within databases is an attractive target for cybercriminals and as
such malicious actors may seek to bypass the security controls of a webpage and have the
database return sensitive data to them. Additionally, this attack vector may potentially be used to
insert or remove items into the database further emphasizing the severity of this vulnerability.
Malicious actors seek to accomplish this by performing SQL injection attacks where SQL code
can be inserted into an input field to modify the behavior of the database interaction (Bedekovic¢
et al., 2022). SQL injection is one of the most prevalent vulnerabilities found within web
applications today (OWASP, 2021) and as such, security professionals must understand how
SQL injection attacks are performed as well as mitigation strategies for protecting sensitive data
from malicious injection.

When addressing SQL injection vulnerabilities, security professionals may utilize a
variety of techniques and tools to effectively mitigate the vector of attack. One of the most
effective of these methods is referred to as interface fuzzing and involves entering unexpected
input into input fields and examining the output results of that entry (GitLab, n.d.). For example,

enumerating a list of common SQL injection commands and then examining the output may

reveal some outputs being significantly larger potentially indicating a SQL injection
vulnerability (Zhang et al., 2019). Additionally, exploratory and manual testing are strong
candidates when testing for SQL injection as the output from trial and error with SQL injection
may reveal details about the underlying architecture lending to more specific attacks (Zhang et
al., 2019). This technique can be further utilized in blind SQL injection attacks where the
attacker injects SQL code to have the system return true or false as well as error-based SQL
injection attacks where the attacker attempts to generate error messages and by examining this
output the attacker can glean information regarding how the attack can be further carried out
(Bedekovic et al., 2022). Fortunately, SQL injection is relatively easily mitigated, and in many
cases, the vulnerability can be mitigated by encoding user input and filtering out the special
characters involved in injection attacks (Zhang et al., 2019). Within the context of inspecting the
Hackazon application for SQL injection vulnerabilities, the Burp suite of tools will be used to
automate the inspection process. Burp Suite is a powerful tool for detecting web application
vulnerabilities and highlights the importance for security professionals to learn and adopt a tool

for the vulnerability scanning process.

Testing Setup and Configuration:

Screenshot 1: Android debugger incompatible with my system

Screenshot 2: Configuring Hackazon for SQL Injection

sasrchString (auery

msaL Blnd: @
Exss

Evidence of Fuzzing Activity and Vulnerabilities Found:

Screenshot 3: Enter Arbitrary Input into the search field

x4+

" HACKAZON

Register on the site o Get the Best Price

Special selection

Screenshot 5: Identify the input field for replacement with SQL Injection

View Holp
binder Ropesier Colsboraior Sequencer Decoder logger Organzer Exiensions Leam Secigs
HTTP hstcry WiebSockets history Praxy setings

5 Request 1o hip iflocabese 80 [127 0 1)

Forvard o QEENENEN Acon | Opebrowse @ wn

B = pecor @D x
straryirput HITP/.1

Riquars! anntatis. 2 v £
“Me7A_Brand sve"ad i
[e—— . 8

b t/337.30 (oL, like Gecko) Chron [
0.8, imaye/ Vi Lmoge vy, imace Ao, 1%, S .

Raquest coskies » -

Serd ta renucer el =
Repastsr Fisquarst headars. % -

Sent
Serd to Sequencer
Send to Comparst
Sand to Decoder

Send to Orgar

Accapt- Encoding

Engagment 108 [Pro weaion oaly]
Change recqaest method

Change body enceding

Copy URL

Copy a8 cxst command (hash]
Copy e

Paste bom e

Sawe tem

Doet mercept requesss

Do nsencept

URLancads &8 you type

Paste -
Message ediior docurmentation

Prasy rtercepsion dosumenn O higpighes

Screenshot 6: Input list of SQL Injection commands to be iterated over

Burp Suite Community Edition v2023.10.3.4 - Temporary Project
C View Help
btnder Repester Colabomaior Sequencer Decoder logger Owganaer Exteesions Leam

Postions Paylosds Reseuwceposl Settings

() Payload sets Ersa

You can defne sre or more payload sets. The number of payload sets depends on the attack fype defined i the Positions tab. Vasous payload types e avadable for each payload set, and each payioad fype can be Customized in Gilerent ways.

Payload set | 1

Payload typs Semole kst

() Payload settings [Simple list]
This payload type lets you conligure a simple st of stings that are used as payloads
Paste
Losd oR1
OR We'x
Remove o
@ >
Cow | UKE
Ooduplecate
Add |
) Payload processing

You can debine na

12 pertorm vancus processing tasks on each payload bekre t 15 used

Add Enabieo Rule

() Payload encoding

This sefting can be wssed 1o URL-encode selected chasacters wieun the fral payioad. for sale tansmessicn wehin HTTP requests

Screenshot 7: Examine the results of the attack

S. Intruder attack of http://localhost - Temporary attack - Not saved to project file [= B

Attack Save Columns

Results Positions Payloads Resource pool Settings

7 Filter: Showing all items.
Request Payload Status code Emor Timeout Length Comment
0 200 32622
1 "OR %= 200 51622
2 ‘LIKE 503 413
3 for” 503 413
4 'OR’1 200 51538
Finished

Screenshot 8: All items shown when the attack is entered into the search field

HACKAZON

Search by «' or '1'="1»

Quality

Screenshot 9: During account creation, the field returns that the user already exists

Please login

o= v

[/]

R i1

Screenshot 10: Profile data can be edited to include injection commands

“ABKAZHI FAO ContactUs Wehlst - Your sccount [T Logout
A= Search products.

Search!

Edit Profile

Home | My Account Edit Profile

Copyright © NTCbjectives 2014

Screenshot 11: SQL injection can be performed on user review comments

Review Form

Screenshot 12: All wish lists can be revealed with an injection command

HACKAZON
WISI HISL

Create a Wish List Find a Wish List

Get Started Search
Remembe
Get Save Ideas Give & Get Never Forget a
Organized and Products Great Gifts Birthday
Create mutple iists for yourself and Add ideas and products from any website Remember your friends’ wish lists & share Get shopping reminders for spocial
others yours occasions

Sacemns L - . - P B B Y

Screenshot 13: Review result returning the value of 1 after injection

* o % &k admin 0 days

1

¥ ¥ ¥ % ¥ admin 0 days
1

Screenshot 14: A value of 1 is also returned on the helpdesk page when injection is

performed

HACKAZON =
Helpdesk

1

Messages:

admin

admin

10

11

Discussion of Discovered Vulnerabilities:

Throughout the Hackazon application, several vulnerabilities to SQL injection were
discovered, and performing an analysis of these vulnerabilities can allow a security professional
to better understand SQL injection attacks as well as how they can be mitigated. As an e-
commerce website, the Hackazon application is heavily reliant on its underlying database in
providing its services to users as well as storing user login credentials. This means that
throughout the website, several input fields send SQL queries to the database and as such must
be tested for vulnerability to SQL injection. Some of the primary fields where vulnerabilities
were discovered include the main search function, the leave a review section for a product, the
Wishlist search field, and the account creation field. Each of these fields provides an access point
to a SQL query interacting with the underlying database and as such must be protected from
SQLi (SQL Injection) attacks.

For all of the fields being examined, the Intruder tool of the Burp Suite application was
used which allowed for the automation of input fuzzing by iterating over common SQL
injections and outputting data regarding the request’s return (GitLab, n.d.). This can be
accomplished by first setting the Burp Suite application to be a proxy for requests sent to the
Hackazon application. This means that all requests intended for the Hackazon application are
first passed through Burp Suite allowing the proxy to modify fields of the HTTP request and
allowing for the automation of SQL injection input (PortSwigger, 2023). Within this analysis of
the Hackazon application, a standard list of simple SQLi commands was used, but more complex
or specifically tailored lists of SQLi payloads can be imported into the Intruder tool for increased
testing coverage allowing the security professional to better ensure that SQLi vulnerabilities are

mitigated. These payload lists can then be modified and used to observe the input field’s

12

response to the differing forms of SQL.I attacks including error-based, blind, union-based, or
standard SQLi attacks allowing for a more comprehensive overview of the field’s security to
SQL injection (Bedekovi¢ et al., 2022).

The most standard form of SQL injection attack involves inserting special characters such
as comment, escape, or quotation characters to terminate the intended input section of the SQL
query and then inserting additional query instructions to execute commands on the database
(Bedekovic et al., 2022). This idea forms the foundation for all SQL. attacks and can allow a
malicious actor to bypass access control and perform actions such as database modification,
lookup, or even code execution (Zhang et al., 2019). Expanding on this, union-based attacks then
additionally utilize the union command of SQL syntax which returns a union between two
database tables (Bedekovi¢ et al., 2022). Union-based SQL.i vulnerabilities could then be
exploited to return information from tables outside of the table the field is meant to access
highlighting a severe risk of data exposure. However, to perform more sophisticated attacks such
as this, more information about the underlying database and SQL query must be understood and
this may be accomplished through the error-based and blind SQL.i techniques. The first of these,
the error-based approach, involves sending values to the database that will generate errors and
then observing the error messages to glean information regarding the type of SQL being used as
well as how the query itself is structured (Bedekovic et al., 2022). Similarly, blind SQL.i attacks
function by sending truth values to the database such as “and ‘1’ = ‘1’ and then observing if the
value returned is true or false to gain a greater understanding of the remaining elements of the
SQL query (OWASP, 2023). In the previous example given, ‘1’ = 1’ should always return true
so by logically ANDing this expression with the preceding values of the SQL query, more

information can be gained regarding the structure of the query. If this SQLI returned false, the

13

attacker would then know that the portion of the query preceding the injected command results in
a value of false allowing for the next input command to follow this discovery (Bedekovic et al.,
2022). The information gained from these approaches can then allow an attacker to fine-tune
their injections and increase the likelihood of their attack succeeding.

The first field where a SQL.i vulnerability can be observed is in the primary search field
for searching for products on the Hackazon web application. By passing arbitrary input to this
field and proxying the HTTP request, the inputs of SQLi commands could then be automated and
the outputs observed (PortSwigger, 2023). While observing the output of the SQLi commands
and comparing their return values against the baseline, it can be seen that the size of the return
request for certain injections resulted in a return request much larger than the baseline potentially
indicating a SQL.i vulnerability. One of the SQLI payloads that potentially indicated a SQL.i
vulnerability was “‘or ‘1’ = ‘1” and upon rendering the return value of the request, it was
observed that all of the products for the website were returned as part of the request. From this
observation, an assumption could then be made that the SQL query takes the user’s input and
then searches the database for input like the inserted value. By terminating this portion of the
query and appending a statement that always returns true the database responds by selecting all
values for that table and returning them in the return request. This highlights a severe SQLI
vulnerability as this field could then be used for further SQL injection attacks to attempt to
access other database tables or to modify the values stored in the database.

A second part of the Hackazon application where a vulnerability to SQL injection was
observed was the user registration page. By performing a similar exploration as outlined in the
previous example, the fields of the user registration page were injected with SQL commands to

observe the behavior of the database. When inserting a command that always returned true, such

14

as the injection outlined in the previous step for the username field an interesting error occurred
stating that a user already existed with this username. This then potentially highlights another
vector of attack where a malicious actor could inject the truth value for the username field in an
effort to break access control and infiltrate accounts other than their own. During the analysis of
this vulnerability, truth values were attempted to be injected into the username field of the
application while iterating over passwords to observe the behavior of the database during the
sign-in process. This attempted attack did not allow access to user accounts potentially indicating
a difference between the SQL query utilized on the registration page and the one used for the
sign-in page. However, the understanding that some username fields do accept a truth value
formed the foundation for the next attack vector and discovered SQL.i vulnerability.

With the understanding that some username fields accept a truth value for matching
input, the next field that was inspected was the username search field of the wish list page. This
field accepts user input and then returns the public wish lists of users who match the input
username. However, by injecting a value that always returns true into the SQL query all user
wish lists can be revealed and returned indicating a major breach of access control. This again
highlights a major vulnerability as further SQL commands could then be injected into this field
in an attempt to return values from other database tables or to modify the values existent within
this table. However, the search field was not the only field of interest discovered on this page,
and another interesting response was returned when modifying the value of a wish list’s name
through the edit name field. By modifying the name of a wish list to append a SQL injection
value such as a value that always returns true or false the name of the wish list will be set to the
Boolean value of either a ‘1’ or a 0’. This same vulnerability was additionally discovered in

most fields that stored user input such as the helpdesk page, the fields for editing personal

information, and the fields for product information. The fact that these fields return a Boolean
value indicates that they could be a further target for exploration using blind SQL.i techniques
(OWASP, 2023).

Throughout the Hackazon application, several vulnerabilities to SQL injection were
discovered and these vulnerabilities could potentially allow a malicious actor to break access
control or execute malicious code on the database (Simpson & Anthill, 2017). While SQL
injection remains one of the most prominent forms of attack against web applications, it is
relatively easy to mitigate through the application of strong security practices during
development (Bedekovic et al., 2022). This could include implementing the principle of least
privilege on input fields so that only the SQL features needed for an input field are enabled as
well as limiting the special characters allowed (Bedekovic et al., 2022). Additionally, special
characters could be encoded so that they are not in a form that could be executed as part of the
SQL command. In addition to these mitigation strategies, limiting the information provided by
error messages or blind SQL injection return values could mask the underlying database
implementation making it more difficult for a malicious actor to discover vulnerabilities
(OWASP, 2023). SQL injection is a serious vulnerability facing web applications that utilize a
database and as such it is essential that strong security practices be enforced during development
as well as security testing be performed to ensure the vulnerability is mitigated. This highlights
the importance for security professionals to understand SQL injection vulnerabilities and be able

to inform developers of the dangers of SQL injection.

16

References
Bedekovi¢, N., Havas, L., Horvat, T., & Cr¢i¢, D. (2022). The importance of developing
preventive techniques for SQL injection attacks. Tehnicki Glasnik, 16(4), 523-

529. https://doi.org/10.31803/tg-20211203090618

GitLab. (n.d.). Web API fuzz testing. GitLab.

https://docs.qgitlab.com/ee/user/application security/api fuzzing/

OWASP. (2021). OWASP top ten: Top 10 web application security risks. OWASP.

https://owasp.org/www-project-top-ten/

OWASP. (2023). Blind SQL injection. OWASP. https://owasp.org/www-

community/attacks/Blind SQL Injection

PortSwigger. (October, 2023). Vulnerabilities detected by Burp scanner. PortSwigger.

https://portswigger.net/burp/documentation/scanner/vulnerabilities-list

Simpson, M. T., Anthill, N. (2017). Hands-on ethical hacking (3" ed.). Cengage Learning.

https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentld=568161245608134035

8553076923&eISBN=9781337271721&id=1937025370&snapshotld=3720027 &

Zhang, L., Zhang, D., Wang, C., Zhao, J., & Zhang, Z. (2019). ART4SQLi: The ART of SQL
injection vulnerability discovery. IEEE Transactions on Reliability, 68(4), 1470-

1489. https://doi.org/10.1109/TR.2019.2910285

https://doi.org/10.31803/tg-20211203090618
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://portswigger.net/burp/documentation/scanner/vulnerabilities-list
https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=5681612456081340358553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&
https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=5681612456081340358553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&
https://doi.org/10.1109/TR.2019.2910285

	References

