
 1

Identify Vulnerability in a Mobile App for

the Hackazon Application

Hayden Eubanks

School of Business, Liberty University

CSIS 486-D01

Prof. Backherms

November 26, 2023

 2

Initial Dynamic Security Scan of the Hackazon Application

Introduction:

When examining the infrastructure of many modern databases, it can be seen that most

web pages utilize a database for storing and retrieving data elements (Bedeković et al., 2022).

Often, the data within these databases is retrieved by issuing SQL commands to the database to

have the database return the desired values (Simpson & Anthill, 2017). This could include data

such as the product listings for an e-commerce application, but also more sensitive info such as

login credentials, payment information, or sensitive personal details. With this in mind, it can be

understood that the data stored within databases is an attractive target for cybercriminals and as

such malicious actors may seek to bypass the security controls of a webpage and have the

database return sensitive data to them. Additionally, this attack vector may potentially be used to

insert or remove items into the database further emphasizing the severity of this vulnerability.

Malicious actors seek to accomplish this by performing SQL injection attacks where SQL code

can be inserted into an input field to modify the behavior of the database interaction (Bedeković

et al., 2022). SQL injection is one of the most prevalent vulnerabilities found within web

applications today (OWASP, 2021) and as such, security professionals must understand how

SQL injection attacks are performed as well as mitigation strategies for protecting sensitive data

from malicious injection.

When addressing SQL injection vulnerabilities, security professionals may utilize a

variety of techniques and tools to effectively mitigate the vector of attack. One of the most

effective of these methods is referred to as interface fuzzing and involves entering unexpected

input into input fields and examining the output results of that entry (GitLab, n.d.). For example,

enumerating a list of common SQL injection commands and then examining the output may

 3

reveal some outputs being significantly larger potentially indicating a SQL injection

vulnerability (Zhang et al., 2019). Additionally, exploratory and manual testing are strong

candidates when testing for SQL injection as the output from trial and error with SQL injection

may reveal details about the underlying architecture lending to more specific attacks (Zhang et

al., 2019). This technique can be further utilized in blind SQL injection attacks where the

attacker injects SQL code to have the system return true or false as well as error-based SQL

injection attacks where the attacker attempts to generate error messages and by examining this

output the attacker can glean information regarding how the attack can be further carried out

(Bedeković et al., 2022). Fortunately, SQL injection is relatively easily mitigated, and in many

cases, the vulnerability can be mitigated by encoding user input and filtering out the special

characters involved in injection attacks (Zhang et al., 2019). Within the context of inspecting the

Hackazon application for SQL injection vulnerabilities, the Burp suite of tools will be used to

automate the inspection process. Burp Suite is a powerful tool for detecting web application

vulnerabilities and highlights the importance for security professionals to learn and adopt a tool

for the vulnerability scanning process.

 4

Testing Setup and Configuration:

Screenshot 1: Android debugger incompatible with my system

Screenshot 2: Configuring Hackazon for SQL Injection

 5

Evidence of Fuzzing Activity and Vulnerabilities Found:

Screenshot 3: Enter Arbitrary Input into the search field

Screenshot 4: Examine HTTP Request

 6

Screenshot 5: Identify the input field for replacement with SQL Injection

Screenshot 6: Input list of SQL Injection commands to be iterated over

 7

Screenshot 7: Examine the results of the attack

Screenshot 8: All items shown when the attack is entered into the search field

 8

Screenshot 9: During account creation, the field returns that the user already exists

Screenshot 10: Profile data can be edited to include injection commands

 9

Screenshot 11: SQL injection can be performed on user review comments

Screenshot 12: All wish lists can be revealed with an injection command

 10

Screenshot 13: Review result returning the value of 1 after injection

Screenshot 14: A value of 1 is also returned on the helpdesk page when injection is

performed

 11

Discussion of Discovered Vulnerabilities:

Throughout the Hackazon application, several vulnerabilities to SQL injection were

discovered, and performing an analysis of these vulnerabilities can allow a security professional

to better understand SQL injection attacks as well as how they can be mitigated. As an e-

commerce website, the Hackazon application is heavily reliant on its underlying database in

providing its services to users as well as storing user login credentials. This means that

throughout the website, several input fields send SQL queries to the database and as such must

be tested for vulnerability to SQL injection. Some of the primary fields where vulnerabilities

were discovered include the main search function, the leave a review section for a product, the

Wishlist search field, and the account creation field. Each of these fields provides an access point

to a SQL query interacting with the underlying database and as such must be protected from

SQLi (SQL Injection) attacks.

For all of the fields being examined, the Intruder tool of the Burp Suite application was

used which allowed for the automation of input fuzzing by iterating over common SQL

injections and outputting data regarding the request’s return (GitLab, n.d.). This can be

accomplished by first setting the Burp Suite application to be a proxy for requests sent to the

Hackazon application. This means that all requests intended for the Hackazon application are

first passed through Burp Suite allowing the proxy to modify fields of the HTTP request and

allowing for the automation of SQL injection input (PortSwigger, 2023). Within this analysis of

the Hackazon application, a standard list of simple SQLi commands was used, but more complex

or specifically tailored lists of SQLi payloads can be imported into the Intruder tool for increased

testing coverage allowing the security professional to better ensure that SQLi vulnerabilities are

mitigated. These payload lists can then be modified and used to observe the input field’s

 12

response to the differing forms of SQLi attacks including error-based, blind, union-based, or

standard SQLi attacks allowing for a more comprehensive overview of the field’s security to

SQL injection (Bedeković et al., 2022).

The most standard form of SQL injection attack involves inserting special characters such

as comment, escape, or quotation characters to terminate the intended input section of the SQL

query and then inserting additional query instructions to execute commands on the database

(Bedeković et al., 2022). This idea forms the foundation for all SQLi attacks and can allow a

malicious actor to bypass access control and perform actions such as database modification,

lookup, or even code execution (Zhang et al., 2019). Expanding on this, union-based attacks then

additionally utilize the union command of SQL syntax which returns a union between two

database tables (Bedeković et al., 2022). Union-based SQLi vulnerabilities could then be

exploited to return information from tables outside of the table the field is meant to access

highlighting a severe risk of data exposure. However, to perform more sophisticated attacks such

as this, more information about the underlying database and SQL query must be understood and

this may be accomplished through the error-based and blind SQLi techniques. The first of these,

the error-based approach, involves sending values to the database that will generate errors and

then observing the error messages to glean information regarding the type of SQL being used as

well as how the query itself is structured (Bedeković et al., 2022). Similarly, blind SQLi attacks

function by sending truth values to the database such as “and ‘1’ = ‘1’” and then observing if the

value returned is true or false to gain a greater understanding of the remaining elements of the

SQL query (OWASP, 2023). In the previous example given, ‘1’ = ‘1’ should always return true

so by logically ANDing this expression with the preceding values of the SQL query, more

information can be gained regarding the structure of the query. If this SQLi returned false, the

 13

attacker would then know that the portion of the query preceding the injected command results in

a value of false allowing for the next input command to follow this discovery (Bedeković et al.,

2022). The information gained from these approaches can then allow an attacker to fine-tune

their injections and increase the likelihood of their attack succeeding.

The first field where a SQLi vulnerability can be observed is in the primary search field

for searching for products on the Hackazon web application. By passing arbitrary input to this

field and proxying the HTTP request, the inputs of SQLi commands could then be automated and

the outputs observed (PortSwigger, 2023). While observing the output of the SQLi commands

and comparing their return values against the baseline, it can be seen that the size of the return

request for certain injections resulted in a return request much larger than the baseline potentially

indicating a SQLi vulnerability. One of the SQLi payloads that potentially indicated a SQLi

vulnerability was “‘or ‘1’ = ‘1” and upon rendering the return value of the request, it was

observed that all of the products for the website were returned as part of the request. From this

observation, an assumption could then be made that the SQL query takes the user’s input and

then searches the database for input like the inserted value. By terminating this portion of the

query and appending a statement that always returns true the database responds by selecting all

values for that table and returning them in the return request. This highlights a severe SQLi

vulnerability as this field could then be used for further SQL injection attacks to attempt to

access other database tables or to modify the values stored in the database.

A second part of the Hackazon application where a vulnerability to SQL injection was

observed was the user registration page. By performing a similar exploration as outlined in the

previous example, the fields of the user registration page were injected with SQL commands to

observe the behavior of the database. When inserting a command that always returned true, such

 14

as the injection outlined in the previous step for the username field an interesting error occurred

stating that a user already existed with this username. This then potentially highlights another

vector of attack where a malicious actor could inject the truth value for the username field in an

effort to break access control and infiltrate accounts other than their own. During the analysis of

this vulnerability, truth values were attempted to be injected into the username field of the

application while iterating over passwords to observe the behavior of the database during the

sign-in process. This attempted attack did not allow access to user accounts potentially indicating

a difference between the SQL query utilized on the registration page and the one used for the

sign-in page. However, the understanding that some username fields do accept a truth value

formed the foundation for the next attack vector and discovered SQLi vulnerability.

With the understanding that some username fields accept a truth value for matching

input, the next field that was inspected was the username search field of the wish list page. This

field accepts user input and then returns the public wish lists of users who match the input

username. However, by injecting a value that always returns true into the SQL query all user

wish lists can be revealed and returned indicating a major breach of access control. This again

highlights a major vulnerability as further SQL commands could then be injected into this field

in an attempt to return values from other database tables or to modify the values existent within

this table. However, the search field was not the only field of interest discovered on this page,

and another interesting response was returned when modifying the value of a wish list’s name

through the edit name field. By modifying the name of a wish list to append a SQL injection

value such as a value that always returns true or false the name of the wish list will be set to the

Boolean value of either a ‘1’ or a ‘0’. This same vulnerability was additionally discovered in

most fields that stored user input such as the helpdesk page, the fields for editing personal

 15

information, and the fields for product information. The fact that these fields return a Boolean

value indicates that they could be a further target for exploration using blind SQLi techniques

(OWASP, 2023).

Throughout the Hackazon application, several vulnerabilities to SQL injection were

discovered and these vulnerabilities could potentially allow a malicious actor to break access

control or execute malicious code on the database (Simpson & Anthill, 2017). While SQL

injection remains one of the most prominent forms of attack against web applications, it is

relatively easy to mitigate through the application of strong security practices during

development (Bedeković et al., 2022). This could include implementing the principle of least

privilege on input fields so that only the SQL features needed for an input field are enabled as

well as limiting the special characters allowed (Bedeković et al., 2022). Additionally, special

characters could be encoded so that they are not in a form that could be executed as part of the

SQL command. In addition to these mitigation strategies, limiting the information provided by

error messages or blind SQL injection return values could mask the underlying database

implementation making it more difficult for a malicious actor to discover vulnerabilities

(OWASP, 2023). SQL injection is a serious vulnerability facing web applications that utilize a

database and as such it is essential that strong security practices be enforced during development

as well as security testing be performed to ensure the vulnerability is mitigated. This highlights

the importance for security professionals to understand SQL injection vulnerabilities and be able

to inform developers of the dangers of SQL injection.

 16

References

Bedeković, N., Havaš, L., Horvat, T., & Crčić, D. (2022). The importance of developing

preventive techniques for SQL injection attacks. Tehnički Glasnik, 16(4), 523-

529. https://doi.org/10.31803/tg-20211203090618

GitLab. (n.d.). Web API fuzz testing. GitLab.

https://docs.gitlab.com/ee/user/application_security/api_fuzzing/

OWASP. (2021). OWASP top ten: Top 10 web application security risks. OWASP.

https://owasp.org/www-project-top-ten/

OWASP. (2023). Blind SQL injection. OWASP. https://owasp.org/www-

community/attacks/Blind_SQL_Injection

PortSwigger. (October, 2023). Vulnerabilities detected by Burp scanner. PortSwigger.

https://portswigger.net/burp/documentation/scanner/vulnerabilities-list

Simpson, M. T., Anthill, N. (2017). Hands-on ethical hacking (3rd ed.). Cengage Learning.

https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=568161245608134035

8553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&

Zhang, L., Zhang, D., Wang, C., Zhao, J., & Zhang, Z. (2019). ART4SQLi: The ART of SQL

injection vulnerability discovery. IEEE Transactions on Reliability, 68(4), 1470-

1489. https://doi.org/10.1109/TR.2019.2910285

https://doi.org/10.31803/tg-20211203090618
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://portswigger.net/burp/documentation/scanner/vulnerabilities-list
https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=5681612456081340358553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&
https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=5681612456081340358553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&
https://doi.org/10.1109/TR.2019.2910285

	References

